Synthesis and Properties of Hydrophilic and Hydrophobic Deep Eutectic Solvents via Heating-Stirring and Ultrasound

Molecules. 2024 Jun 28;29(13):3089. doi: 10.3390/molecules29133089.

Abstract

Deep eutectic solvents (DESs) have emerged as a greener alternative to other more polluting traditional solvents and have attracted a lot of interest in the last two decades. The DESs are less toxic dissolvents and have a lower environmental footprint. This paper presents an alternative synthesis method to the classical heating-stirring method. The ultrasound method is one of the most promising synthesis methods for DESs in terms of yield and energy efficiency. Therefore, the ultrasound synthesis method was studied to obtain hydrophobic (Aliquat 336:L-Menthol (3:7); Lidocaine:Decanoic acid (1:2)) and hydrophilic DESs based on choline chloride, urea, ethylene glycol and oxalic acid. The physical characterization of DESs via comparison of Fourier transform infrared (FTIR) spectra showed no difference between the DESs obtained by heating-stirring and ultrasound synthesis methods. The study and comparison of all the prepared DESs were carried out via nuclear magnetic resonance spectroscopy (NMR). The density and viscosity properties of DESs were evaluated. The density values were similar for both synthesis methods. However, differences in viscosity values were detected due to the presence of some water in hygroscopic DESs.

Keywords: deep eutectic solvents; heating–stirring method; synthesis; ultrasound method.