Ablation of Small Liver Metastases Presenting as Foci of Diffusion Restriction on MRI-Results from the Prospective Minimally Invasive Thermal Ablation (MITA) Study

Cancers (Basel). 2024 Jun 29;16(13):2409. doi: 10.3390/cancers16132409.

Abstract

Purpose: Liver metastases presenting as small hyperintense foci on diffusion-weighted imaging (DWI) pose a therapeutic challenge. Ablation is generally not possible since these lesions are often occult on ultrasound and CT. The purpose of this prospective study was to assess if small liver metastases (≤10 mm) detected on DWI can be successfully localized and ablated with the Hepatic Arteriography and C-Arm CT-Guided Ablation technique (HepACAGA).

Materials and methods: All consecutive patients with small liver metastases (≤10 mm), as measured on DWI, referred for ablation with HepACAGA between 1 January 2021, and 31 October 2023, were included. Re-ablations and ablations concomitant with another local treatment were excluded. The primary outcome was the technical success rate, defined as the intraprocedural detection and subsequent successful ablation of small liver metastases using HepACAGA. Secondary outcomes included the primary and secondary local tumor progression (LTP) rates and the complication rate.

Results: A total of 15 patients (26 tumors) were included, with liver metastases from colorectal cancer (73%), neuro-endocrine tumors (15%), breast cancer (8%) and esophageal cancer (4%). All 26 tumors were successfully identified, punctured and ablated (a technical success rate of 100%). After a median follow-up of 9 months, primary and secondary LTP were 4% and 0%, respectively. No complications occurred.

Conclusion: In this proof-of-concept study, the HepACAGA technique was successfully used to detect and ablate 100% of small liver metastases identified on DWI with a low recurrence rate and no complications. This technique enables the ablation of subcentimeter liver metastases detected on MRI.

Keywords: C-arm CT; CTHA; DWI; colorectal liver metastases; local tumor progression; small liver metastases; technical success.

Grants and funding

This research received no external funding.