Precision cancer medicine brought the promise of improving outcomes for patients with cancer. High-throughput molecular profiling of tumors at treatment failure aims to direct a patient to a treatment matched to the tumor profile. In this way, improved outcome has been achieved in a small number of patients whose tumors exhibit unique targetable oncogenic drivers. Most cancers, however, contain multiple genetic alterations belonging to and of various hallmarks of cancer; for most of these alterations, there is limited knowledge on the level of evidence, their hierarchical roles in oncogenicity, and utility as biomarkers for response to targeted treatment(s). We developed a proof-of-concept trial that explores new treatment strategies in a molecularly-enriched tumor-agnostic, pediatric population. The evaluation of novel agents, including first-in-child molecules, alone or in combination, is guided by the available understanding of or hypotheses for the mechanisms of action of the diverse cancer events. Main objectives are: to determine 1) recommended phase 2 doses, 2) activity signals to provide the basis for disease specific development, and 3) to define new predictive biomarkers. Here we outline concepts, rationales and designs applied in the European AcSé-ESMART trial and highlight the feasibility but also complexity and challenges of such innovative platform trials.
Keywords: Bayesian adaptive method; Biomarker discovery; Molecular enrichment strategy; Multi-arm phase I/II platform trial; Pediatric drug development; Precision cancer medicine.
Copyright © 2024 Elsevier Ltd. All rights reserved.