Petroleum-based packaging have been developed during the last century to transport and protect many products, regardless of the field of applications (food, electronics, cosmetics, leisure, etc.). Such protection has been very useful for the development of our society by favoring economic growth, limiting food waste and product deterioration, and consequently avoiding strong environmental impacts. An environmental concern has now been taken into consideration by numerous countries, with several legislations being promulgated to avoid or limit plastic waste. In this context, cellulose emerges as an alternative material for packaging applications since it is bio-based, biodegradable, and in most cases recyclable in an existing stream. However, most of the existing cellulose packaging is based on roll-to-roll 2D products or plied boxes and is not suitable to substitute plastics in 3D-shaped packaging. Recently, the interest in molded cellulose has increased exponentially thanks to new adaptations of raw materials and processes. Alternatively, research groups and companies try to adapt the injection molding to the production of cellulose-based packaging solutions. This review details for the first time the various processes and recent works in this direction. After proposing the basics of cellulose, this work focuses on the different types of molded cellulose and the novel strategies to produce 3D cellulose-based materials.
Keywords: 3D cellulosic packaging; 3D printing; Cellulose injection; Deep drawing; Foam forming; Functionalization; Molded cellulose; Thermocompression.
Copyright © 2024 The Authors. Published by Elsevier Ltd.. All rights reserved.