Chitosan-Based Oleogels: Emulsion Drying Kinetics and Physical, Rheological, and Textural Characteristics of Olive Oil Oleogels

Mar Drugs. 2024 Jul 17;22(7):318. doi: 10.3390/md22070318.

Abstract

Oleogels are of high interest as promising substitutes for trans fats in foods. An emulsion-templated method was used to trap olive oil in the chitosan crosslinked with vanillin matrix. Oil in water emulsions (50:50 w/w) with different chitosan content (0.7 and 0.8% w/w) with a constant vanillin/chitosan ratio (1.3) were air-dried at different temperatures (50, 60, 70, and 80 °C) and freeze-dried (-26 °C and 0.1 mbar) to produce oleogels. Only falling rate periods were determined during air-drying kinetics and were successfully modeled with empirical and diffusional models. At a drying temperature of 70 °C, the drying kinetics were the fastest. The viscoelasticity of oleogels showed that the elastic modulus significantly increased after drying at 60 and 70 °C, and those dried at 50 °C and freeze-dried were weaker. All oleogels showed high oil binding capacity (>91%), but the highest values (>97%) were obtained in oleogels with a threshold elastic modulus (50,000 Pa). The oleogels' color depended on the drying temperature and chitosan content (independent of the drying method). Significant differences were observed between air-dried and freeze-dried oleogels with respect to oxidative stability. Oxidation increased with the air-drying time regardless of chitosan content. The found results indicated that drying conditions must be carefully selected to produce oleogels with specific features.

Keywords: color; marine biopolymer; novel bioproduct; oil binding capacity; oil oxidation; texture; viscoelasticity; water diffusivity.

MeSH terms

  • Benzaldehydes / chemistry
  • Chitosan* / chemistry
  • Desiccation
  • Emulsions*
  • Freeze Drying*
  • Kinetics
  • Olive Oil* / chemistry
  • Organic Chemicals* / chemistry
  • Rheology*
  • Temperature
  • Viscosity

Substances

  • Chitosan
  • Olive Oil
  • oleogels
  • Emulsions
  • Organic Chemicals
  • Benzaldehydes
  • vanillin