Freestanding Films of Reduced Graphene Oxide Fully Decorated with Prussian Blue Nanoparticles for Hydrogen Peroxide Sensing

ACS Omega. 2024 Jul 10;9(29):31569-31577. doi: 10.1021/acsomega.4c01457. eCollection 2024 Jul 23.

Abstract

Developing thin, freestanding electrodes that work simultaneously as a current collector and electroactive material is pivotal to integrating portable and wearable chemical sensors. Herein, we have synthesized graphene/Prussian blue (PB) electrodes for hydrogen peroxide detection (H2O2) using a two-step method. First, an reduced graphene oxide/PAni/Fe2O3 freestanding film is prepared using a doctor blade technique, followed by the electrochemical deposition of PB nanoparticles over the films. The iron oxide nanoparticles work as the iron source for the heterogeneous electrochemical deposition of the nanoparticles in a ferricyanide solution. The size of the PB cubes electrodeposited over the graphene-based electrodes was controlled by the number of voltammetric cycles. For H2O2 sensing, the PB10 electrode achieved the lowest detection and quantification limits, 2.00 and 7.00 μM, respectively. The findings herein evidence the balance between the structure of the graphene/PB-based electrodes with the electrochemical performance for H2O2 detection and pave the path for developing new freestanding electrodes for chemical sensors.