Superficial skin injuries especially burn injuries and unhealed diabetic foot open wounds remain troubling for public health. The healing process is often interrupted by the invasion of resistant pathogens that results in the failure of conventional procedures outside the clinical settings. Herein, we designed nanofibers dressing with intrinsic antibacterial potential of poly(vinyl-pyrrolidone)-iodine/ poly (vinyl)-alcohol by electrospinning with chitosan encapsulating ceftriaxone (CPC/NFs). The optimized electrospun CPC/NFs exhibited smooth surface morphology with average diameter of 165 ± 7.1 nm, drug entrapment and loading efficiencies of 76.97 ± 4.7 % and 8.32 ± 1.73 %, respectively. The results displayed smooth and uniformed fibers with adequate thermal stability and ensured chemical doping. The enhanced in vitro antibacterial efficacy of CPC/NFs against resistant E. coli isolates and biosafety studies encourage the use of designed nanofibers dressing for burn injuries and diabetic foot injuries. In vivo studies proved the healing power of dressing for burn wounds model and diabetic infected wounds model. Immunofluorescence investigation of the wound tissue also suggested promising healing ability of CPC/NFs. The designed approach would be helpful to treat these infected skin open wounds in the hospitals and outside the clinical settings.
Keywords: Ceftriaxone; E. coli; Nanofibers; Skin injuries; Wound dressing.
Copyright © 2024 Elsevier B.V. All rights reserved.