The FXR1 network acts as a signaling scaffold for actomyosin remodeling

Cell. 2024 Sep 5;187(18):5048-5063.e25. doi: 10.1016/j.cell.2024.07.015. Epub 2024 Aug 5.

Abstract

It is currently not known whether mRNAs fulfill structural roles in the cytoplasm. Here, we report the fragile X-related protein 1 (FXR1) network, an mRNA-protein (mRNP) network present throughout the cytoplasm, formed by FXR1-mediated packaging of exceptionally long mRNAs. These mRNAs serve as an underlying condensate scaffold and concentrate FXR1 molecules. The FXR1 network contains multiple protein binding sites and functions as a signaling scaffold for interacting proteins. We show that it is necessary for RhoA signaling-induced actomyosin reorganization to provide spatial proximity between kinases and their substrates. Point mutations in FXR1, found in its homolog FMR1, where they cause fragile X syndrome, disrupt the network. FXR1 network disruption prevents actomyosin remodeling-an essential and ubiquitous process for the regulation of cell shape, migration, and synaptic function. Our findings uncover a structural role for cytoplasmic mRNA and show how the FXR1 RNA-binding protein as part of the FXR1 network acts as an organizer of signaling reactions.

Keywords: RNA-binding protein; biomolecular condensates; cytoplasmic organization; fragile X syndrome; messenger ribonucleoprotein network; non-canonical roles of mRNA; signal transduction; signaling scaffold; spatial proximity; structural role of mRNA.

MeSH terms

  • Actomyosin* / metabolism
  • Cytoplasm / metabolism
  • Fragile X Mental Retardation Protein / genetics
  • Fragile X Mental Retardation Protein / metabolism
  • Fragile X Syndrome / genetics
  • Fragile X Syndrome / metabolism
  • Humans
  • RNA, Messenger* / genetics
  • RNA, Messenger* / metabolism
  • RNA-Binding Proteins* / metabolism
  • Signal Transduction*
  • rhoA GTP-Binding Protein* / metabolism

Substances

  • Actomyosin
  • Fragile X Mental Retardation Protein
  • FXR1 protein, human
  • rhoA GTP-Binding Protein
  • RNA, Messenger
  • RNA-Binding Proteins