In animals, overt circadian rhythms of physiology and behavior are centrally regulated by a circadian clock located in specific brain regions. In the fruit fly Drosophila and in mammals, these clocks rely on single-cell oscillators, but critical for their function as central circadian pacemakers are network properties that change dynamically throughout the circadian cycle as well as in response to environmental stimuli.1,2,3 In the fly, this plasticity involves circadian rhythms of expansion and retraction of clock neuron fibers.4,5,6,7,8,9,10,11,12,13,14 Whether these drastic structural changes are a universal property of central neuronal pacemakers is unknown. To address this question, we studied neurons of the mouse suprachiasmatic nucleus (SCN) that express vasoactive intestinal polypeptide (VIP), which are critical for the SCN to function as a central circadian pacemaker. By targeting the expression of the fluorescent protein tdTomato to these neurons and using tissue clearing techniques to visualize all SCN VIPergic neurons and their fibers, we show that, similar to clock neurons in the fly, VIPergic fibers undergo a daily rhythm of expansion and retraction, with maximal branching during the day. This rhythm is circadian, as it persists under constant environmental conditions and is present in both males and females. We propose that circadian structural remodeling of clock neurons represents a key feature of central circadian pacemakers that is likely critical to regulate network properties, the response to environmental stimuli, and the regulation of circadian outputs.
Keywords: circadian plasticity; circadian remodeling; neuronal plasticity; neuronal structural plasticity.
Copyright © 2024 Elsevier Inc. All rights reserved.