Humans exhibit consistent color preferences that are often described as a curvilinear pattern across hues. The recent literature posits that color preference is linked to the preference for objects or other entities associated with those colors. However, many studies examine this preference using isoluminant colors, which don't reflect the natural viewing experience typically influenced by different light intensities. The inclusion of random luminance levels (luminance noise) in chromatic stimuli may provide an initial step towards assessing color preference as it is presented in the real world. Employing mosaic stimuli, this study aimed to evaluate the influence of luminance noise on human color preference. Thirty normal trichromats engaged in a two-alternative forced-choice paradigm, indicating their color preferences between presented pairs. The chromatic stimuli included saturated versions of 8 standard hues, presented in mosaics with varying diameters under different luminance noise conditions. Results indicated that the inclusion of luminance noise increased color preference across all hues, specifically under the high luminance noise range, while the curvilinear pattern remained unchanged. Finally, women exhibit a greater sensitivity to the presence of luminance noise than men, potentially due to differences between men and women in aesthetic evaluation strategies.
© 2024. The Author(s).