Development and performance evaluation of fully automated deep learning-based models for myocardial segmentation on T1 mapping MRI data

Sci Rep. 2024 Aug 14;14(1):18895. doi: 10.1038/s41598-024-69529-7.

Abstract

To develop a deep learning-based model capable of segmenting the left ventricular (LV) myocardium on native T1 maps from cardiac MRI in both long-axis and short-axis orientations. Models were trained on native myocardial T1 maps from 50 healthy volunteers and 75 patients using manual segmentation as the reference standard. Based on a U-Net architecture, we systematically optimized the model design using two different training metrics (Sørensen-Dice coefficient = DSC and Intersection-over-Union = IOU), two different activation functions (ReLU and LeakyReLU) and various numbers of training epochs. Training with DSC metric and a ReLU activation function over 35 epochs achieved the highest overall performance (mean error in T1 10.6 ± 17.9 ms, mean DSC 0.88 ± 0.07). Limits of agreement between model results and ground truth were from -35.5 to + 36.1 ms. This was superior to the agreement between two human raters (-34.7 to + 59.1 ms). Segmentation was as accurate for long-axis views (mean error T1: 6.77 ± 8.3 ms, mean DSC: 0.89 ± 0.03) as for short-axis images (mean error ΔT1: 11.6 ± 19.7 ms, mean DSC: 0.88 ± 0.08). Fully automated segmentation and quantitative analysis of native myocardial T1 maps is possible in both long-axis and short-axis orientations with very high accuracy.

Keywords: Cardiac magnetic resonance imaging; Deep learning; Long axis; Mapping; Short axis; U-Net.

MeSH terms

  • Adult
  • Deep Learning*
  • Female
  • Heart / diagnostic imaging
  • Heart Ventricles / diagnostic imaging
  • Humans
  • Image Processing, Computer-Assisted / methods
  • Magnetic Resonance Imaging* / methods
  • Male
  • Middle Aged
  • Myocardium