Ethiopia is currently facing a major environmental problem caused by soil erosion. In order to tackle this problem, it is essential to implement a comprehensive watershed management approach and give priority to conservation efforts depending on the level of severity. Therefore, the objective of this research is to evaluate the mean annual soil erosion and rank the sub-watersheds for conservations in the Ayu watershed, utilizing the Revised Universal Soil Loss Equation (RUSLE) model and the Sub-Watershed Prioritization Tool (SWPT). RUSLE was utilized to predict the annual average soil erosion rate, while SWPT was applied to conduct Weighted Sum Analysis (WSA) for ranking sub-watersheds. Support Vector Machine (SVM) was employed for classifying land use and land cover. The Relative importance of morphometric and topo-hydrologic features in the SWPT was analyzed using a Random Forest model. The Bland-Altman plot and Wilcoxon Signed Rank Test were employed to assess the agreement in prioritizing watersheds between RUSLE results and the SWPT. Furthermore, field observations were conducted to validate the land use classification by collecting ground data. In addition, the study was enhanced with local viewpoints by conducting focus group discussions with agricultural experts and farmers to obtain qualitative insights and validation of resuts. The findings showed that soil loss varied from 0 to 110 t/ha/yr, with an average of 8.95 t/ha/yr, resulting in a total loss of 384365.3 tons annually. The comparison of RUSLE and SWPT showed a moderate positive relationship (r = 0.59). The results of the Bland-Altman plot indicate a consistent agreement between the two methods. However, there is inconsistency among the five sub watersheds. This study enhances the knowledge of soil erosion patterns and offers useful guidance for watershed conservation techniques. It can be also used as a beneficial framework for managing watersheds, with possible uses outside of the Ayu watershed.
Keywords: Ayu watershed; GIS; RUSLE; Remote sensing; Soil loss; Sub-watershed prioritization.
© 2024 The Authors.