Interferon regulatory factor 5 (IRF5) is a key transcription factor in inflammatory and immune responses, with its dysregulation linked to autoimmune diseases. Using bioinformatic approaches, including Basic Local Alignment Search Tool (BLAST) for sequence similarity searches, BLAST-Like Alignment Tool (BLAT) for genome-wide alignments, and several phylogenetics software, such as Multiple Alignment using Fast Fourier Transform (MAFFT), for phylogenetic analyses, we characterized the structure, origin, and evolutionary history of the human IRF5 pseudogene 1 (IRF5P1). Our analyses reveal that IRF5P1 is a chimeric processed pseudogene containing sequences derived from multiple sources, including IRF5-like sequences from disparate organisms. We find that IRF5P1 is specific to higher primates, likely originating through an ancient retroviral integration event approximately 60 million years ago. Interestingly, IRF5P1 resides within the triple QxxK/R motif-containing (TRIQK) gene, and its antisense strand is predominantly expressed as part of the TRIQK pre-messenger RNA (mRNA). Analysis of publicly available RNA-seq data suggests potential expression of antisense IRF5P1 RNA. We hypothesize that this antisense RNA may regulate IRF5 expression through complementary binding to IRF5 mRNA, with human genetic variants potentially modulating this interaction. The conservation of IRF5P1 in the primate lineage suggests its positive effects on primate evolution and innate immunity. This study highlights the importance of investigating pseudogenes and their potential regulatory roles in shaping lineage-specific immune adaptations.
Keywords: IRF5P1; evolution; innate immunity; primate specific; pseudogene.
© 2024 The Author(s). Journal of Medical Virology published by Wiley Periodicals LLC.