Chemical communication is vital in organismal health, reproduction, and overall well-being. Understanding the molecular pathways, neural processes, and computations governing these signals remains an active area of research. The nematode Caenorhabditis elegans provides a powerful model for studying these processes as it produces a volatile sex pheromone. This pheromone is synthesized by virgin females or sperm-depleted hermaphrodites and serves as an attractant for males. This protocol describes a detailed method for isolating the volatile sex pheromone from several C. elegans strains (WT strain N2, daf-22, and fog-2) and C. remanei. We also provide a protocol for quantifying the male chemotaxis response to the volatile sex pheromone. Our analysis utilizes measurements such as chemotaxis index (C.I.), arrival time (A.T.), and a trajectory plot to compare male responses under various conditions accurately. This method allows for robust comparisons between males of different genetic backgrounds or developmental stages. Furthermore, the experimental setup outlined here is adaptable to investigating other chemoattraction chemicals.