Stearoyl-CoA desaturase inhibition is toxic to acute myeloid leukemia displaying high levels of the de novo fatty acid biosynthesis and desaturation

Leukemia. 2024 Nov;38(11):2395-2409. doi: 10.1038/s41375-024-02390-9. Epub 2024 Aug 26.

Abstract

Identification of specific and therapeutically actionable vulnerabilities, ideally present across multiple mutational backgrounds, is needed to improve acute myeloid leukemia (AML) patients' outcomes. We identify stearoyl-CoA desaturase (SCD), the key enzyme in fatty acid (FA) desaturation, as prognostic of patients' outcomes and, using the clinical-grade inhibitor SSI-4, show that SCD inhibition (SCDi) is a therapeutic vulnerability across multiple AML models in vitro and in vivo. Multiomic analysis demonstrates that SCDi causes lipotoxicity, which induces AML cell death via pleiotropic effects. Sensitivity to SCDi correlates with AML dependency on FA desaturation regardless of mutational profile and is modulated by FA biosynthesis activity. Finally, we show that lipotoxicity increases chemotherapy-induced DNA damage and standard chemotherapy further sensitizes AML cells to SCDi. Our work supports developing FA desaturase inhibitors in AML while stressing the importance of identifying predictive biomarkers of response and biologically validated combination therapies to realize their full therapeutic potential.

MeSH terms

  • Animals
  • Cell Line, Tumor
  • DNA Damage / drug effects
  • Enzyme Inhibitors / pharmacology
  • Fatty Acids* / biosynthesis
  • Fatty Acids* / metabolism
  • Humans
  • Leukemia, Myeloid, Acute* / drug therapy
  • Leukemia, Myeloid, Acute* / metabolism
  • Leukemia, Myeloid, Acute* / pathology
  • Mice
  • Prognosis
  • Stearoyl-CoA Desaturase* / antagonists & inhibitors
  • Stearoyl-CoA Desaturase* / genetics
  • Stearoyl-CoA Desaturase* / metabolism
  • Xenograft Model Antitumor Assays

Substances

  • Stearoyl-CoA Desaturase
  • Fatty Acids
  • Enzyme Inhibitors