Rationale and objectives: The structural lung features that characterize individuals with preserved ratio impaired spirometry (PRISm) that remain stable overtime are unknown. The objective of this study was to use machine learning models with computed tomography (CT) imaging to classify stable PRISm from stable controls and stable COPD and identify discriminative features.
Materials and methods: A total of 596 participants that did not transition between control, PRISm and COPD groups at baseline and 3-year follow-up were evaluated: n = 274 with normal lung function (stable control), n = 22 stable PRISm, and n = 300 stable COPD. Investigated features included: quantitative CT (QCT) features (n = 34), such as total lung volume (%TLCCT) and percentage of ground glass and reticulation (%GG+Reticulationtexture), as well as Radiomic (n = 102) features, including varied intensity zone distribution grainy texture (GLDZMZDV). Logistic regression machine learning models were trained using various feature combinations (Base, Base+QCT, Base+Radiomic, Base+QCT+Radiomic). Model performances were evaluated using area under receiver operator curve (AUC) and comparisons between models were made using DeLong test; feature importance was ranked using Shapley Additive Explanations values.
Results: Machine learning models for all feature combinations achieved AUCs between 0.63-0.84 for stable PRISm vs. stable control, and 0.65-0.92 for stable PRISm vs. stable COPD classification. Models incorporating imaging features outperformed those trained solely on base features (p < 0.05). Compared to stable control and COPD, those with stable PRISm exhibited decreased %TLCCT and increased %GG+Reticulationtexture and GLDZMZDV.
Conclusion: These findings suggest that reduced lung volumes, and elevated high-density and ground glass/reticulation patterns on CT imaging are associated with stable PRISm.
Keywords: Fibrosis; ILA; PRISm; Radiomic; Texture Features.
Copyright © 2024 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.