Hints of Biological Activity of Xerosydryle: Preliminary Evidence on the Early Stages of Seedling Development

Int J Mol Sci. 2024 Aug 9;25(16):8717. doi: 10.3390/ijms25168717.

Abstract

Xerosydryle belongs to a new category of materials resulting from the interaction of water with various hydrophilic polymers. These materials can exhibit different properties depending on the kind of polymer-water interaction. Previous research confirmed the existence of a solid manifestation of water at room temperature. The thermal properties of dissolved xerosydryle in water are similar to those of biological macromolecules during denaturation but with greater stability. This study investigated the biological effect of xerosydryle on a living system for the first time, using a seed germination model. The interaction was evaluated using physiological assays such as chlorophyll shifts, potassium (re)uptake during the onset of germination and a transcriptome approach. Seeds were treated with samples of xerosydryle and distilled water. Transcriptome analysis of germinating seeds highlighted differences (up- and down-regulated genes) between seeds treated with xerosydryle and those treated with distilled water. Overall, the experiments performed indicate that xerosydryle, even at low concentrations, interferes with seedling growth in a manner similar to an osmotic modulator. This work paves the way for a more comprehensive exploration of the active biological role of xerosydryle and similar compounds on living matter and opens up speculation on the interactions at the boundaries between physics, chemistry, and biology.

Keywords: Nafion; abiotic stress; chlorophyll; exclusion zone (EZ); transcriptome analysis; xerosydryle.

MeSH terms

  • Chlorophyll / metabolism
  • Gene Expression Profiling
  • Gene Expression Regulation, Plant
  • Germination*
  • Potassium / metabolism
  • Seedlings* / genetics
  • Seedlings* / growth & development
  • Seedlings* / metabolism
  • Seeds / genetics
  • Seeds / growth & development
  • Seeds / metabolism
  • Transcriptome
  • Water / metabolism

Substances

  • Chlorophyll
  • Potassium
  • Water

Grants and funding