Neutralizing IL-38 activates γδ T cell-dependent antitumor immunity and sensitizes for chemotherapy

J Immunother Cancer. 2024 Aug 28;12(8):e008641. doi: 10.1136/jitc-2023-008641.

Abstract

Background: The interleukin (IL)-1-family receptor antagonist IL-38 has emerged as a negative regulator of auto-inflammation. Given the intricate interplay between antitumor immunity and auto-inflammation, we hypothesized that blocking IL-38 may enhance tumor immune control.

Methods: Our hypothesis was tested in the transgenic polyoma virus middle T oncoprotein mammary carcinoma model that is suitable for identifying strong immunomodulators. To investigate the effect of acute IL-38 blockade, we used a neutralizing antibody, alone or in combination with chemotherapy. Immune cell composition and location in tumors were determined by flow cytometry and immunohistochemistry, respectively. The role of γδ T cells was studied using an antibody blocking γδ T-cell receptor signaling. Whole transcriptome RNA sequencing and RNA expression analysis were employed to determine mechanisms downstream of IL-38 neutralization. Additionally, in vitro assays with γδ T cells, CD8+ T cells and cDC1, followed by in vivo CD8+ T cell depletion, were performed to study the underlying mechanistic pathways.

Results: Both, genetic ablation of IL-38 and neutralization with the antibody, reduced tumorigenesis, and IL-38 blockade improved chemotherapy efficacy. This was accompanied by an augmented lymphocyte infiltrate dominated by γδ T cells and CD8+ T cells, and signaling through the γδ-T-cell receptor was required for CD8+ T cell infiltration. Rather than directly interacting with CD8+ T cells, γδ T cells recruited conventional dendritic cells (cDC1) into tumors via the chemokine Xcl1. cDC1 in turn activated CD8+ T cells via the Notch pathway. Moreover, IL-38 negatively correlated with cDC1, XCL1-producing γδ T cells, T-cell infiltrates and survival in patients with mammary carcinoma.

Conclusions: These data suggest that interfering with IL-38 improves antitumor immunity even in immunologically cold tumors.

Keywords: Antibody; Breast Cancer; Chemotherapy; T cell.

MeSH terms

  • Animals
  • Antibodies, Neutralizing* / immunology
  • Antibodies, Neutralizing* / pharmacology
  • CD8-Positive T-Lymphocytes / immunology
  • CD8-Positive T-Lymphocytes / metabolism
  • Cell Line, Tumor
  • Female
  • Humans
  • Interleukin-1 / antagonists & inhibitors
  • Interleukin-1 / metabolism
  • Mice
  • Receptors, Antigen, T-Cell, gamma-delta / metabolism

Substances

  • Antibodies, Neutralizing
  • Interleukin-1
  • Receptors, Antigen, T-Cell, gamma-delta
  • IL1F10 protein, human
  • Il1f10 protein, mouse