Suppression of ferroptosis by vitamin A or radical-trapping antioxidants is essential for neuronal development

Nat Commun. 2024 Sep 1;15(1):7611. doi: 10.1038/s41467-024-51996-1.

Abstract

The development of functional neurons is a complex orchestration of multiple signaling pathways controlling cell proliferation and differentiation. Because the balance of antioxidants is important for neuronal survival and development, we hypothesized that ferroptosis must be suppressed to gain neurons. We find that removal of antioxidants diminishes neuronal development and laminar organization of cortical organoids, which is fully restored when ferroptosis is inhibited by ferrostatin-1 or when neuronal differentiation occurs in the presence of vitamin A. Furthermore, iron-overload-induced developmental growth defects in C. elegans are ameliorated by vitamin E and A. We determine that all-trans retinoic acid activates the Retinoic Acid Receptor, which orchestrates the expression of anti-ferroptotic genes. In contrast, retinal and retinol show radical-trapping antioxidant activity. Together, our study reveals an unexpected function of vitamin A in coordinating the expression of essential cellular gatekeepers of ferroptosis, and demonstrates that suppression of ferroptosis by radical-trapping antioxidants or by vitamin A is required to obtain mature neurons and proper laminar organization in cortical organoids.

MeSH terms

  • Animals
  • Antioxidants* / pharmacology
  • Caenorhabditis elegans Proteins / genetics
  • Caenorhabditis elegans Proteins / metabolism
  • Caenorhabditis elegans* / drug effects
  • Caenorhabditis elegans* / metabolism
  • Cell Differentiation / drug effects
  • Cyclohexylamines / pharmacology
  • Ferroptosis* / drug effects
  • Humans
  • Mice
  • Neurogenesis / drug effects
  • Neurons* / cytology
  • Neurons* / drug effects
  • Neurons* / metabolism
  • Organoids / drug effects
  • Organoids / metabolism
  • Phenylenediamines
  • Receptors, Retinoic Acid / genetics
  • Receptors, Retinoic Acid / metabolism
  • Signal Transduction / drug effects
  • Tretinoin / pharmacology
  • Vitamin A* / metabolism
  • Vitamin A* / pharmacology
  • Vitamin E / pharmacology

Substances

  • Vitamin A
  • Antioxidants
  • Cyclohexylamines
  • ferrostatin-1
  • Vitamin E
  • Receptors, Retinoic Acid
  • Tretinoin
  • Caenorhabditis elegans Proteins
  • Phenylenediamines