A New Perspective on Stroke Research: Unraveling the Role of Brain Oxygen Dynamics in Stroke Pathophysiology

Aging Dis. 2024 Aug 15. doi: 10.14336/AD.2024.0548. Online ahead of print.

Abstract

Stroke, a leading cause of death and disability, often results from ischemic events that cut off the brain blood flow, leading to neuron death. Despite treatment advancements, survivors frequently endure lasting impairments. A key focus is the ischemic penumbra, the area around the stroke that could potentially recover with prompt oxygenation; yet its monitoring is complex. Recent progress in bioluminescence-based oxygen sensing, particularly through the Green enhanced Nano-lantern (GeNL), offers unprecedented views of oxygen fluctuations in vivo. Utilized in awake mice, GeNL has uncovered hypoxic pockets within the cerebral cortex, revealing the brain's oxygen environment as a dynamic landscape influenced by physiological states and behaviors like locomotion and wakefulness. These findings illuminate the complexity of oxygen dynamics and suggest the potential impact of hypoxic pockets on ischemic injury and recovery, challenging existing paradigms and highlighting the importance of microenvironmental oxygen control in stroke resilience. This review examines the implications of these novel findings for stroke research, emphasizing the criticality of understanding pre-existing oxygen dynamics for addressing brain ischemia. The presence of hypoxic pockets in non-stroke conditions indicates a more intricate hypoxic scenario in ischemic brains, suggesting strategies to alleviate hypoxia could lead to more effective treatments and rehabilitation. By bridging gaps in our knowledge, especially concerning microenvironmental changes post-stroke, and leveraging new technologies like GeNL, we can pave the way for therapeutic innovations that significantly enhance outcomes for stroke survivors, promising a future where an understanding of cerebral oxygenation dynamics profoundly informs stroke therapy.

Publication types

  • Review