This study investigates the electrochemical properties of MgV2O4/V2O3 composites for Aqueous Zinc-Ion Batteries (AZIBs) using both Density Functional Theory (DFT) calculations and experimental validation. DFT analysis reveals significant electron mobility and reactivity at the MgV2O4/V2O3 interface, enhancing Zn2+ storage capabilities. This theoretical prediction is confirmed experimentally by synthesizing a novel MgV2O4/V2O3 composite that demonstrates superior electrochemical performance compared to pristine phases. Notably, the transition of the MgV2O4/V2O3 composite into an amorphous structure during electrochemical cycling is pivotal, providing enhanced diffusion pathways and increased conductivity. The composite delivers a consistent specific capacity of 330.2 mAh g-1 over 50 cycles at 0.1 A g-1 and maintains 152.7 mAh g-1 at an elevated current density of 20 A g-1 after 2000 cycles, validating the synergy between DFT insights and experimental outcomes, and underscoring the potential of amorphous structures in enhancing battery performance.
Keywords: MgV2O4; V2O3; amorphous cathodes; aqueous zinc‐ion batteries; heterojunction.
© 2024 Wiley‐VCH GmbH.