Electrocatalytic efficiency of carbon nitride supported gold nanoparticle based sensor for iodide and cysteine detection

Anal Biochem. 2025 Jan:696:115660. doi: 10.1016/j.ab.2024.115660. Epub 2024 Sep 10.

Abstract

Extensive investigations are being conducted on gold nanoparticles focusing on their applications in biosensors, laser phototherapy, targeted drug delivery and bioimaging utilizing advanced detection techniques. In this work, an electrochemical sensor was developed based on graphite carbon nitride supported gold nanoparticles. Carbon nitride supported gold nanoparticles (Au-CN) was synthesized by applying a deposition-precipitation route followed by a chemical reduction technique. The composite system was characterized by X-ray diffraction and X-ray photo electron spectroscopy methods. Electron microscopy analysis confirmed the formation of gold nanoparticles within the size range of 5-15 nm on the carbon nitride support. Carbon nitride supported gold based sensor was employed for the electrochemical detection of iodide ion and l-cysteine. The limit of detection and sensitivity of the sensor was attained 8.9 μM and 0.96 μAμM⁻1cm⁻2, respectively, for iodide ion, while 0.48 μM and 5.8 μAμM⁻1cm⁻2, respectively, was achieved for the recognition of cysteine. Furthermore, a paper-based electrochemical device was developed using the Au-CN hybrid system that exhibited promising results in detecting iodide ions, highlighting its potential for economic and portable device applications.

Keywords: Carbon nitride; Electrochemical detection; Gold nanoparticles; Iodide ion and cysteine detection; Paper based device.

MeSH terms

  • Biosensing Techniques / methods
  • Catalysis
  • Cysteine* / analysis
  • Cysteine* / chemistry
  • Electrochemical Techniques* / methods
  • Gold* / chemistry
  • Iodides* / analysis
  • Iodides* / chemistry
  • Limit of Detection
  • Metal Nanoparticles* / chemistry
  • Nitriles* / chemistry

Substances

  • Iodides
  • Gold
  • Cysteine
  • cyanogen
  • Nitriles