Mutations of p53 protein occur in over half of all cancers, with profound effects on tumor biology. We present the first-to our knowledge-method for noninvasive visualization of p53 in tumor tissue in vivo, using SPECT, in 3 different models of cancer. Methods: Anti-p53 monoclonal antibodies were conjugated to the cell-penetrating transactivator of transcription (TAT) peptide and a metal ion chelator and then radiolabeled with 111In to allow SPECT imaging. 111In-anti-p53-TAT conjugates were retained longer in cells overexpressing p53-specific than non-p53-specific 111In-mIgG (mouse IgG from murine plasma)-TAT controls, but not in null p53 cells. Results: In vivo SPECT imaging showed enhanced uptake of 111In-anti-p53-TAT, versus 111In-mIgG-TAT, in high-expression p53R175H and medium-expression wild-type p53 but not in null p53 tumor xenografts. The results were confirmed in mice bearing genetically engineered KPC mouse-derived pancreatic ductal adenocarcinoma tumors. Imaging with 111In-anti-p53-TAT was possible in KPC mice bearing spontaneous p53R172H pancreatic ductal adenocarcinoma tumors. Conclusion: We demonstrate the feasibility of noninvasive in vivo molecular imaging of p53 in tumor tissue using a radiolabeled TAT-modified monoclonal antibody.
Keywords: cancer; molecular imaging; p53; pancreatic ductal adenocarcinoma.
© 2024 by the Society of Nuclear Medicine and Molecular Imaging.