As a cereal crop, maize ranked third place after wheat and rice in terms of land area coverage for its cultivation, and in Bangladesh, it ranked second place after rice in its production. As the substitution of wheat products, maize has been used widely in baking for human consumption and animal fodder. However, maize grown in this soil around the coal-burning power plant may cause heavy metals uptake that poses a risk to humans. The study was conducted at the maize fields in the Ganges delta floodplain soils of Bangladesh to know the concentration of eight heavy metals (Ni, Cr, Cd, Mn, As, Cu, Zn, and Pb) in soil and maize samples using an inductively coupled plasma mass spectrometer (ICP-MS) and to estimate the risk of heavy metals in maize grains. Mean concentrations of heavy metals (mg/kg) in soil were in decreasing order of Zn (10.12) > Cu (10.02) > Mn (5.48) > Ni (4.95) > Cr (3.72) > As (0.51) > Pb (0.27) > Cd (0.23). The plant tissues showed the descending order of heavy metal concentration as roots > grains > stems > leaves. BCF values for As, Cd, Pb, and Mn in roots were higher than 1.0, indicating considerable accumulation of these elements in maize via roots. Total hazard quotient (ƩTHQ) of heavy metals through maize grain consumption was 3.7E+00 and 3.9E+00 for adults and children, respectively, indicating non-cancer risk to the consumers. Anthropogenic influences contributed to the heavy metals enrichment in the Ganges delta floodplain soils around the thermal plant, and potential risks (non-carcinogenic and carcinogenic) were observed due to the consumption of maize grain cultivated in the study area.
Keywords: Ganges tidal soil; Health risk; Heavy metals; Maize grains; Source identification.
Copyright © 2024 Elsevier Ltd. All rights reserved.