Stable and homogeneous intermetallic alloys by atomic gas-migration for propane dehydrogenation

Nat Commun. 2024 Sep 17;15(1):8157. doi: 10.1038/s41467-024-52518-9.

Abstract

Intermetallic nanoparticles (NPs) possess significant potentials for catalytic applications, yet their production presents challenges as achieving the disorder-to-order transition during the atom ordering process involves overcoming a kinetic energy barrier. Here, we demonstrate a robust approach utilizing atomic gas-migration for the in-situ synthesis of stable and homogeneous intermetallic alloys for propane dehydrogenation (PDH). This approach relies on the physical mixture of two separately supported metal species in one reactor. The synthesized platinum-zinc intermetallic catalysts demonstrate exceptional stability for 1300 h in continuous propane dehydrogenation under industrially relevant industrial conditions, with extending 95% propylene selectivity and propane conversions approaching thermodynamic equilibrium values at 550-600 oC. In situ characterizations and density functional theory/molecular dynamics simulation reveal Zn atoms adsorb on the particle surface and then diffuse inward, aiding in the formation of ultrasmall and highly ordered intermetallic alloys. This in-situ gas-migration strategy is applicable to a wide range of intermetallic systems.