Objective: Delirium is a syndrome that leads to severe complications in hospitalized patients, but is considered preventable in many cases. One of the biggest challenges is to identify patients at risk in a hectic clinical routine, as most screening tools cause additional workload. The aim of this study was to validate a machine learning (ML)-based delirium prediction tool on surgical in-patients undergoing a systematic assessment of delirium.
Materials and methods: 738 in-patients of a vascular surgery, a trauma surgery and an orthopedic surgery department were screened for delirium using the DOS scale twice a day over their hospital stay. Concurrently, delirium risk was predicted by the ML algorithm in real-time for all patients at admission and evening of admission. The prediction was performed automatically based on existing EHR data and without any additional documentation needed.
Results: 103 patients (14.0%) were screened positive for delirium using the DOS scale. Out of them, 85 (82.5%) were correctly identified by the ML algorithm. Specificity was slightly lower, detecting 463 (72.9%) out of 635 patients without delirium. The AUROC of the algorithm was 0.883 (95% CI, 0.8523-0.9147).
Discussion: In this prospective validation study, the implemented machine-learning algorithm was able to detect patients with delirium in surgical departments with high discriminative performance.
Conclusion: In future, this tool or similar decision support systems may help to replace time-intensive screening tools and enable efficient prevention of delirium.
Keywords: clinical decision support; delirium; electronic health records; prediction algorithms; random forest.
© The Author(s) 2024. Published by Oxford University Press on behalf of the American Medical Informatics Association.