A nitrogen-responsive cytokinin oxidase/dehydrogenase regulates root response to high ammonium in rice

New Phytol. 2024 Nov;244(4):1391-1407. doi: 10.1111/nph.20128. Epub 2024 Sep 19.

Abstract

Plant root system is significantly influenced by high soil levels of ammonium nitrogen, leading to reduced root elongation and enhanced lateral root branching. In Arabidopsis, these processes have been reported to be mediated by phytohormones and their downstream signaling pathways, while the controlling mechanisms remain elusive in crops. Through a transcriptome analysis of roots subjected to high/low ammonium treatments, we identified a cytokinin oxidase/dehydrogenase encoding gene, CKX3, whose expression is induced by high ammonium. Knocking out CKX3 and its homologue CKX8 results in shorter seminal roots, fewer lateral roots, and reduced sensitivity to high ammonium. Endogenous cytokinin levels are elevated by high ammonium or in ckx3 mutants. Cytokinin application results in shorter seminal roots and fewer lateral roots in wild-type, mimicking the root responses of ckx3 mutants to high ammonium. Furthermore, CKX3 is transcriptionally activated by type-B RR25 and RR26, and ckx3 mutants have reduced auxin content and signaling in roots under low ammonium. This study identified RR25/26-CKX3-cytokinin as a signal module that mediates root responses to external ammonium by modulating of auxin signaling in the root meristem and lateral root primordium. This highlights the critical role of cytokinin metabolism in regulating rice root development in response to ammonium.

Keywords: CKX; ammonium; auxin; cytokinin; lateral root; rice; seminal root.

MeSH terms

  • Ammonium Compounds* / metabolism
  • Ammonium Compounds* / pharmacology
  • Cytokinins* / metabolism
  • Gene Expression Regulation, Plant* / drug effects
  • Indoleacetic Acids / metabolism
  • Indoleacetic Acids / pharmacology
  • Mutation / genetics
  • Nitrogen* / metabolism
  • Nitrogen* / pharmacology
  • Oryza* / drug effects
  • Oryza* / enzymology
  • Oryza* / genetics
  • Oryza* / growth & development
  • Oxidoreductases* / genetics
  • Oxidoreductases* / metabolism
  • Plant Proteins / genetics
  • Plant Proteins / metabolism
  • Plant Roots* / drug effects
  • Plant Roots* / genetics
  • Plant Roots* / growth & development
  • Plant Roots* / metabolism
  • Signal Transduction / drug effects

Substances

  • cytokinin oxidase
  • Ammonium Compounds
  • Cytokinins
  • Nitrogen
  • Oxidoreductases
  • Plant Proteins
  • Indoleacetic Acids