Dental and orthopedic implants have become routine medical technologies for tooth replacement and bone fixation. Despite significant progress in implantology, achieving sufficient osseointegration remains a challenge, often leading to implant failure over the long term. Nanotechnology offers the potential to mimic the natural patterns of living tissues, providing a promising platform for tissue engineering and implant surface design. Among the various methods for developing nanostructures, High-Regular Laser-Induced Periodic Surface Structures (HR-LIPSS) techniques stand out for their ability to fabricate highly ordered nanostructures with excellent long-range repeatability and production efficiency. In this study, we utilized an innovative technical approach to generate traditional laser-induced superficial LIPSS nanostructures, followed by detailed surface analysis using classical microscopy and physicochemical methods. Our findings demonstrate for the first time that nanostructured LIPSS surfaces can significantly enhance cell adhesion and proliferation while providing an optimal environment for cell metabolism. Given the high reproducibility, low cost, and potential of HR-LIPSS techniques to support cell growth and differentiation, this novel technology has the potential to impact both the industrial development of new implants and clinical outcomes after implantation.
Keywords: Bone cells proliferation; Femtosecond laser; Green nanotechnology; HR-LIPSS nanotexturing; Osteogenesis.
Copyright © 2024 Elsevier Inc. All rights reserved.