Introduction: Gastrointestinal (GI) magnetic resonance imaging (MRI) can simultaneously capture gastric peristalsis, emptying, and intestinal filling and transit. Performing GI MRI with animals requires anesthesia, which complicates physiology and confounds interpretation and translation from animals to humans. This study aims to enable MRI in conscious rats, and for the first time, characterize GI motor functions in awake versus anesthetized conditions.
Methods: We acclimated rats to remain awake, still, and minimally stressed during MRI. We scanned 14 Sprague-Dawley rats in both awake and anesthetized conditions after voluntarily consuming a contrast-enhanced test meal.
Results: Awake rats remained physiologically stable during MRI, showed gastric emptying of 23.7±1.4% after 48 minutes, and exhibited strong peristaltic contractions propagating through the antrum with a velocity of 0.72±0.04 mm/s, a relative amplitude of 40.7±2.3%, and a frequency of 5.1±0.1 cycles per minute. In the anesthetized condition, gastric emptying was about half of that in the awake condition, likely due to the effect of anesthesia in halving the amplitudes of peristaltic contractions rather than their frequency (not significantly changed) or velocity. In awake rats, the intestine filled more quickly and propulsive contractions were more occlusive.
Conclusion: We demonstrated the effective acquisition and analysis of GI MRI in awake rats. Awake rats show faster gastric emptying, stronger gastric contraction with a faster propagation speed, and more effective intestinal filling and transit, compared to anesthetized rats. Our protocol is expected to benefit future preclinical studies of GI physiology and pathophysiology.