Acinetobacter baumannii is a worldwide Gram-negative bacterium with a high resistance rate, responsible for a broad spectrum of hospital-acquired infections. A computational chemogenomics framework was applied to investigate the repurposing of approved drugs to target A. baumannii. This comprehensive approach involved compiling and preparing proteomic data, identifying homologous proteins in drug-target databases, evaluating the evolutionary conservation of targets, and conducting molecular docking studies and in vitro assays. Seven drugs were selected for experimental assays. Among them, tavaborole exhibited the most promising antimicrobial activity with a minimum inhibitory concentration (MIC) value of 2 μg/ml, potent activity against several clinically relevant strains, and robust efficacy against biofilms from multidrug-resistant strains at a concentration of 16 μg/ml. Molecular docking studies elucidated the binding modes of tavaborole in the editing and active domains of leucyl-tRNA synthetase, providing insights into its structural basis for antimicrobial activity. Tavaborole shows promise as an antimicrobial agent for combating A. baumannii infections and warrants further investigation in preclinical studies.
Copyright: © 2024 Borges et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.