Purpose: The objective of this study was to investigate whether different dispensing processes can alter the physicochemical and structural (Q3) attributes of a topical cream product, and potentially alter its performance.
Methods: Acyclovir cream, 5% (Zovirax®) is sold in the UK and other countries in a tube and a pump packaging configurations. The structural attributes of the cream dispensed from each packaging configuration were analyzed by optical microscopy, confocal Raman microscopy and cryo-scanning electron microscopy. Rheological behavior of the products was also evaluated. Product performance (rate and extent of skin delivery) was assessed by in vitro permeation tests (IVPT) using heat-separated human epidermis mounted in static vertical (Franz-type) diffusion cells.
Results: Differences in Q3 attributes and IVPT profiles were observed with creams dispensed from the two packaging configurations, even though the product inside each packaging appeared to be the same in Q3 attributes. Visible globules were recognized in the sample dispensed from the pump, identified as dimethicone globules by confocal Raman microscopy. Differences in rheological behaviour could be attributed to these globules as products not dispensed through the pump, demonstrated a similar rheological behaviour. Further, IVPT confirmed a reduced rate and extent to delivery across human epidermis from the product dispensed through a pump.
Conclusions: Different methods of dispensing topical semisolid products can result in metamorphosis and Q3 changes that may have the potential to alter the bioavailability of an active ingredient. These findings have potential implications for product developers and regulators, related to the manufacturing and comparative testing of reference standard and prospective generic products dispensed from different packaging configurations.
Keywords: Bioequivalence; Compliance; Confocal Raman microscopy; Cryo-SEM; IVPT; Microstructure; Physicochemical and structural; Pump dispensers; Q3; Quality attributes of semisolids; Rheology.
© 2024. The Author(s).