Recently, the impacts of climate change, notably ocean warming and solar ultraviolet radiation, have led to significant stress and mortality in cnidarians. The objective of this study is to decode the metabolic responses of sea anemones Entacmaea quadricolor and upside-down jellyfish Cassiopea andromeda upon exposure to thermal and ultraviolet stress. Gas chromatography-mass spectrometry and ultraperformance liquid chromatography coupled with high-resolution mass spectrometry targeting polar and non-polar metabolites were applied. In total, 72 polar and 242 lipophilic metabolites were detected in jellyfish and sea anemones, respectively. Amino acids are the major metabolite class in jellyfish, and triacylglycerides are the predominant lipids in jellyfish and anemones. Exposure to stressors led to metabolic alterations, marked by elevated amino acids in jellyfish and increased amino acids and sugar alcohols in sea anemones at 34 °C and after four days of ultraviolet radiation. Non-polar metabolome analysis indicated distinct responses to ultraviolet radiation and thermal stress in both species.
Keywords: Bleaching; Cassiopeia andromeda; Climate change; Entacmaea quadricolor; Gas chromatography–mass spectrometry; Heat stress; Metabolomics; Ocean warming; Radiation; Ultraperformance liquid chromatography; Ultraviolet.
Copyright © 2024 Elsevier Ltd. All rights reserved.