Progressive cardiomyopathy with intercalated disc disorganization in a rat model of Becker dystrophy

EMBO Rep. 2024 Nov;25(11):4898-4920. doi: 10.1038/s44319-024-00249-9. Epub 2024 Oct 2.

Abstract

Becker muscular dystrophy (BMD) is an X-linked disorder due to in-frame mutations in the DMD gene, leading to a less abundant and truncated dystrophin. BMD is less common and severe than Duchenne muscular dystrophy (DMD) as well as less investigated. To accelerate the search for innovative treatments, we developed a rat model of BMD by deleting the exons 45-47 of the Dmd gene. Here, we report a functional and histopathological evaluation of these rats during their first year of life, compared to DMD and control littermates. BMD rats exhibit moderate damage to locomotor and diaphragmatic muscles but suffer from a progressive cardiomyopathy. Single nuclei RNA-seq analysis of cardiac samples revealed shared transcriptomic abnormalities in BMD and DMD rats and highlighted an altered end-addressing of TMEM65 and Connexin-43 at the intercalated disc, along with electrocardiographic abnormalities. Our study documents the natural history of a translational preclinical model of BMD and reports a cellular mechanism for the cardiac dysfunction in BMD and DMD offering opportunities to further investigate the organization role of dystrophin in intercellular communication.

Keywords: Becker Muscular Dystrophy; Connexins; Dilated Cardiomyopathy; Heart Failure; Tmem65.

MeSH terms

  • Animals
  • Cardiomyopathies* / etiology
  • Cardiomyopathies* / genetics
  • Cardiomyopathies* / metabolism
  • Cardiomyopathies* / pathology
  • Connexin 43 / genetics
  • Connexin 43 / metabolism
  • Disease Models, Animal*
  • Disease Progression
  • Dystrophin* / genetics
  • Dystrophin* / metabolism
  • Exons / genetics
  • Male
  • Muscular Dystrophy, Duchenne* / genetics
  • Muscular Dystrophy, Duchenne* / metabolism
  • Muscular Dystrophy, Duchenne* / pathology
  • Myocardium / metabolism
  • Myocardium / pathology
  • Rats

Substances

  • Dystrophin
  • Connexin 43