Aims: To create and validate a weakly supervised artificial intelligence (AI) model for detection of abnormal colorectal histology, including dysplasia and cancer, and prioritise biopsies according to clinical significance (severity of diagnosis).
Materials and methods: Triagnexia Colorectal, a weakly supervised deep learning model, was developed for the classification of colorectal samples from haematoxylin and eosin (H&E)-stained whole slide images. The model was trained on 24 983 digitised images and assessed by multiple pathologists in a simulated digital pathology environment. The AI application was implemented as part of a point and click graphical user interface to streamline decision-making. Pathologists assessed the accuracy of the AI tool, its value, ease of use and integration into the digital pathology workflow.
Results: Validation of the model was conducted on two cohorts: the first, on 100 single-slide cases, achieved micro-average model specificity of 0.984, micro-average model sensitivity of 0.949 and micro-average model F1 score of 0.949 across all classes. A secondary multi-institutional validation cohort, of 101 single-slide cases, achieved micro-average model specificity of 0.978, micro-average model sensitivity of 0.931 and micro-average model F1 score of 0.931 across all classes. Pathologists reflected their positive impressions on the overall accuracy of the AI in detecting colorectal pathology abnormalities.
Conclusions: We have developed a high-performing colorectal biopsy AI triage model that can be integrated into a routine digital pathology workflow to assist pathologists in prioritising cases and identifying cases with dysplasia/cancer versus non-neoplastic biopsies.
Keywords: artificial intelligence; colon biopsy triaging; colon polyp; colorectal cancer; computer‐aided diagnosis; digital pathology; whole slide images.
© 2024 John Wiley & Sons Ltd.