Purpose: To describe choroidal thickness measurements using a sequential deep learning segmentation in adults who received childhood atropine treatment for myopia control.
Design: Prospective, observational study.
Methods: Choroidal thickness was measured by swept-source optical coherence tomography in adults who received childhood atropine, segmented using a sequential deep learning approach.
Results: Of 422 eyes, 94 (22.3 %) had no previous exposure to atropine treatment, while 328 (77.7 %) had received topical atropine during childhood. After adjusting for age, sex, and axial length, childhood atropine exposure was associated with a thicker choroid by 32.1 μm (95 % CI, 9.2-55.0; P = 0.006) in the inner inferior, 23.5 μm (95 % CI, 1.9-45.1; P = 0.03) in the outer inferior, 21.8 μm (95 % CI, 0.76-42.9; P = 0.04) in the inner nasal, and 21.8 μm (95 % CI, 2.6-41.0; P = 0.03) in the outer nasal. Multivariable analysis, adjusted for age, sex, atropine use, and axial length, showed an independent association between central subfield choroidal thickness and the incidence of tessellated fundus (P < 0.001; OR, 0.97; 95 % CI, 0.96-0.98).
Conclusions: This study demonstrated that short-term (2-4 years) atropine treatment during childhood was associated with an increase in choroidal thickness of 20-40 μm in adulthood (10-20 years later), after adjusting for age, sex, and axial length. We also observed an independent association between eyes with thicker central choroidal measurements and reduced incidence of tessellated fundus. Our study suggests that childhood exposure to atropine treatment may affect choroidal thickness in adulthood.
Keywords: Atropine; Choroidal thickness; Myopia; Optical coherence tomography; SS-OCT.
Copyright © 2024. Published by Elsevier Inc.