Many shotgun proteomics experiments are negatively influenced by highly abundant proteins, such as those measuring residual host cell proteins (HCP) amidst highly abundant recombinant biotherapeutic or plasma proteins amidst albumin and immunoglobulins. While western blotting and ELISAs can reveal the presence of specific low abundance proteins from highly abundant background proteins, mass spectrometry approaches are required to define the low abundance protein composition in these scenarios. The challenge in detecting low abundance proteins in a high protein background by standard shotgun approaches is that spectra are often not triggered on their peptides in data dependent acquisition methods but rather on the highly abundant background peptides. Here, we use tandem mass tags (TMT) to introduce a carrier proteome approach to enhance the detection of proteins, such as from residual host cell proteomes amidst a highly abundant background. Using a mixture of bovine serum albumin (BSA) and E. coli as a mock high background/low abundance target protein formulation, we demonstrate proof-of-principle experiments allowing the improved detection of target proteins amidst a high protein background. While we observed significant coisolation interference, we mitigated it by using a spike-in interference detection TMT channel. Finally, we use the approach to identify 300 residual E. coli proteins from a protein A pulldown of a human IgG antibody, demonstrating that it may be applicable to analysis of HCPs in biotherapeutic protein formulations.
Keywords: biotherapeutics; carrier proteome; host cell proteome; tandem mass tags.