Application of Chlorosulfonyl Isocyanate (CSI) in the Synthesis of Fused Tetracyclic Ketone Ring Systems

J Org Chem. 2024 Nov 1;89(21):15636-15651. doi: 10.1021/acs.joc.4c01714. Epub 2024 Oct 10.

Abstract

Chlorosulfonyl isocyanate (CSI) is a complex reagent capable of facilitating numerous synthetic transformations, including lactam/lactone formation, sulfonylation, Friedel-Crafts-type acylations, and cycloadditions. Annulation reactions to form nitrogen-, oxygen-, and sulfur-bearing heterocycles have been observed with CSI; however, the application of CSI toward the generation of fused cyclic ketone ring systems has not been previously reported. A serendipitous discovery of the pertinence of CSI occurred during a structure-activity relationship campaign around our established lead benzosuberene-based molecule that functions as a potent inhibitor of tubulin polymerization. The benzylic olefin within this molecule represents a promising moiety for further functionalization. CSI was initially investigated as a reagent to effect transformation of this olefin to its corresponding β-lactam functionality, but instead resulted in an unexpected tetracyclic fused ring system in high yield (88%). This finding led to an exploration of the reactivity of CSI with various arenes. Benzosuberene analogues with varying functionalizations were synthesized and treated with CSI, with all examples resulting in a fused ring system except those bearing electron-withdrawing groups. Notably, simplified arene structures with fewer substituents were also observed to undergo cyclization under these conditions. This strategy represents a promising approach for the synthesis of appropriately functionalized tetracyclic ring systems.