Background: Omicron, a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant, entered Taiwan at the end of 2021. The Taiwanese government ended its "zero-COVID" policy in March 2022. Multiple coronavirus disease 2019 (COVID-19) outbreaks began in April 2022. We monitored the replacement of Omicron subvariants after BA.1/BA.2 and analyzed their correlation with COVID-19 outbreaks.
Methods: We collected SARS-CoV-2 real-time qRTPCR-positive nasopharyngeal swabs from Kaohsiung Medical University Hospital (KMUH), Kaohsiung City, Taiwan, and performed sequencing for specimens exhibiting a cytopathic effect in Vero E6 cells to determine their clades and lineages. We analyzed the medical records of COVID-19 patients and identified hospitalization risk factor(s). We retrieved SARS-CoV-2 sequences identified in Taiwan from GISAID and analyzed their correlation with COVID-19 data from the Taiwan Centers for Disease Control.
Results: We analyzed the phylogenesis of KMUH-47 to KMUH-104 (SARS-CoV-2 isolates identified herein) and all of the Omicron subvariants from BA.5 to XBB.1 (n = 1930). Age and comorbidities were hospitalization risk factors. Men generally exhibited a greater fatality rate than women. COVID-19-related deaths predominantly occurred in individuals over 70 years old. The COVID-19-related case fatality rate increased as nucleotide (NT) and amino acid (AA) substitutions increased. The number of COVID-19-related cases and deaths progressively decreased with each outbreak between August 2022 and October 2023.
Conclusion: Hospitalization was associated with age and the presence of comorbidities. COVID-19-related fatality was linked to sex, age, and the accumulation of NT and AA substitutions in emerging Omicron subvariants.
Keywords: Age; COVID-19; Fatality; Omicron subvariant; Sex; Vaccination.
Copyright © 2024 The Authors. Published by Elsevier Ltd.. All rights reserved.