Identification and epidemiological analysis of a putative novel hantavirus in Australian flying foxes

Virus Genes. 2024 Oct 11. doi: 10.1007/s11262-024-02113-3. Online ahead of print.

Abstract

In July 2017, an investigation into the cause of neurological signs in a black flying fox (Pteropus alecto, family Pteropodidae) identified a putative novel hantavirus (Robina virus, ROBV, order Bunyavirales, family Hantaviridae, genus Mobatvirus) in its brain. Analysis of the evolutionary relationship between other hantaviruses using maximum-likelihood, a systematic Bayesian clustering approach, and a minimum spanning tree, all suggest that ROBV is most closely related to another Mobatvirus, Quezon virus, previously identified in the lung of a Philippine frugivorous bat (Rousettus amplexicaudatus, also family Pteropodidae). Subsequently, between March 2018 and October 2023, a total of 495 bats were opportunistically screened for ROBV with an experimental qRT-PCR. The total prevalence of ROBV RNA detected in Pteropus spp. was 4.2% (95% CI 2.8-6.4%). Binomial modelling identified that there was substantial evidence supporting an increase (P = 0.033) in the detection of ROBV RNA in bats in 2019 and 2020 suggesting of a possible transient epidemic. There was also moderate evidence to support the effect of season (P = 0.064), with peak detection in the cooler seasons, autumn, and winter, possibly driven by physiological and ecological factors similar to those already identified for other bat-borne viruses. This is Australia's first reported putative hantavirus and its identification could expand the southern known range of hantaviruses in Australasia.

Keywords: Bat; Epidemiology; Hantavirus; Infection dynamics; Mobatvirus; Pteropus.