In practical sensing tasks, noise is usually regarded as an obstacle that degrades the sensitivity. Fortunately, stochastic resonance can counterintuitively harness noise to notably enhance the output signal-to-noise ratio in a nonlinear system. Although stochastic resonance has been extensively studied in various disciplines, its potential in realistic sensing tasks remains largely unexplored. Here, we propose and demonstrate a noise-enhanced microwave sensor using a thermal ensemble of interacting Rydberg atoms. Using the strong nonlinearity present in the Rydberg ensembles and leveraging stochastic noises in the system, we demonstrate the stochastic resonance driven by a weak microwave signal (from several microvolts per centimeter to millivolts per centimeter). A substantial enhancement in the detection is achieved, with a sensitivity surpassing that of a heterodyne atomic sensor by 6.6 decibels. Our results offer a promising platform for investigating stochastic resonance in practical sensing scenarios.