Nonlinearity-enhanced continuous microwave detection based on stochastic resonance

Sci Adv. 2024 Oct 11;10(41):eado8130. doi: 10.1126/sciadv.ado8130. Epub 2024 Oct 11.

Abstract

In practical sensing tasks, noise is usually regarded as an obstacle that degrades the sensitivity. Fortunately, stochastic resonance can counterintuitively harness noise to notably enhance the output signal-to-noise ratio in a nonlinear system. Although stochastic resonance has been extensively studied in various disciplines, its potential in realistic sensing tasks remains largely unexplored. Here, we propose and demonstrate a noise-enhanced microwave sensor using a thermal ensemble of interacting Rydberg atoms. Using the strong nonlinearity present in the Rydberg ensembles and leveraging stochastic noises in the system, we demonstrate the stochastic resonance driven by a weak microwave signal (from several microvolts per centimeter to millivolts per centimeter). A substantial enhancement in the detection is achieved, with a sensitivity surpassing that of a heterodyne atomic sensor by 6.6 decibels. Our results offer a promising platform for investigating stochastic resonance in practical sensing scenarios.