HBI: a hierarchical Bayesian interaction model to estimate cell-type-specific methylation quantitative trait loci incorporating priors from cell-sorted bisulfite sequencing data

Genome Biol. 2024 Oct 15;25(1):273. doi: 10.1186/s13059-024-03411-7.

Abstract

Methylation quantitative trait loci (meQTLs) quantify the effects of genetic variants on DNA methylation levels. However, most published studies utilize bulk methylation datasets composed of different cell types and limit our understanding of cell-type-specific methylation regulation. We propose a hierarchical Bayesian interaction (HBI) model to infer cell-type-specific meQTLs, which integrates a large-scale bulk methylation data and a small-scale cell-type-specific methylation data. Through simulations, we show that HBI enhances the estimation of cell-type-specific meQTLs. In real data analyses, we demonstrate that HBI can further improve the functional annotation of genetic variants and identify biologically relevant cell types for complex traits.

Keywords: Cell-sorted methylation sequencing data; Cell-type-specific DNA methylation; Colocalization; Methylation quantitative trait loci; hierarchical Bayesian interaction model.

MeSH terms

  • Bayes Theorem*
  • DNA Methylation*
  • Humans
  • Models, Genetic
  • Quantitative Trait Loci*
  • Sequence Analysis, DNA / methods