A rapid and feasible approach was used to develop visible-light-driven-type Dion-Jacobson perovskites by the modification of the RbLaTa2O7 host (RbLTO) with FeCl2 through the molten salt route. X-ray diffraction (XRD) characterization showed that FeCl2-modified layered perovskite (e.g., Fe@RbLTO) preserved its lamellar structure. SEM micrographs confirmed the layered morphology of both RbLTO and Fe@RbLTO perovskite materials. The UV-Vis spectra illustrated a significant red shift of the absorption edge after Fe2+ modification, with the band gap energy reducing from 3.88 to 1.82 eV. H2-TPR measurements emphasized the anchorage of Fe2+ species located on the surface of the layered perovskite as well as in the interlayer space. The synthesized materials were valorized as photocatalysts for the degradation of phenol under both Xe lamp and simulated solar irradiation (SSL) conditions. The photocatalytic reaction follows first-order kinetics. By-product formations during phenol (Ph) degradation were identified and quantified using high-performance liquid chromatography (HPLC). Hydroquinone, 1,2-dihydroxi-benzene, benzoquinone, and pyrogallol were identified as the main Ph degradation intermediates. Pristine RbLaTa2O7 exhibited a phenol conversion value of about 17% using an Xe lamp, while a ≈ 11% conversion was achieved under SSL. A substantial increase in Ph conversion and selectivity was perceived after Fe2+ modification. Fe@RbLTO demonstrated superior photocatalytic performances (43% conversion of phenol under an Xe lamp, and 91% selectivity to aromatic intermediate compounds) at optimized reaction conditions. The stability of the Fe@RbLTO photocatalyst when exposed to an Xe lamp was also assessed. These results suggest that the existence of iron species on the layered perovskite's surface is responsible for the improved redox properties of Fe@RbLTO, resulting in a valuable material for environmental applications.
Keywords: molten salt route; optical properties; oxide materials; photocatalytic activity.