Population pharmacokinetics/pharmacodynamics of minocycline plus rifampicin in patients with complicated skin and skin structure infections caused by MRSA

J Antimicrob Chemother. 2024 Oct 16:dkae363. doi: 10.1093/jac/dkae363. Online ahead of print.

Abstract

Background: The population pharmacokinetics/pharmacodynamics (PK/PD) of minocycline, rifampicin and linezolid in patients with complicated skin and soft tissue infections (cSSTIs) caused by MRSA are described.

Methods: Samples were collected in a Phase 4 study of oral minocycline plus rifampicin versus linezolid showing minocycline plus rifampicin to be non-inferior to linezolid. Antibiotics were assayed by HPLC or LC-MS, and a population PK model was developed using Pmetrics. The association between PK/PD indices and patient outcomes was explored.

Results: A three-compartment model (with an absorption compartment) with first-order input and elimination best described the data for the three drugs. No covariates were included in the final model. The population median values (95% credibility limits) of the clearance and volume of distribution were 7.412 L/h (5.121-8.361) and 14.155 L (6.799-33.901) for minocycline, 5.683 L/h (3.703-7.726) and 7.736 L (6.031-8.948) for rifampicin, and 1.970 L/h (1.326-2.499) and 20.169 L (12.857-32.629) for linezolid, respectively. Maximum a posteriori probability-Bayesian estimation plots of observed versus predicted had a slope of 0.999 r20.967 for minocycline, slope 0.998 r20.769 for rifampicin and slope 0.998 r20.895 for linezolid. PK/PD indices were not related to clinical outcome. Taking a translational minocycline fAUC24h/MIC target of >0.5 for minocycline in the presence of rifampicin, 96% (49/51) of patients reached the target.

Conclusions: Population PK models of minocycline, rifampicin and linezolid were developed in patients with MRSA cSSTI and almost all patients reached the predefined PD index targets. As a result, neither AUC, MIC nor the AUC/MIC ratio could be related to clinical outcome.