Radial glia progenitor polarity in health and disease

Front Cell Dev Biol. 2024 Oct 2:12:1478283. doi: 10.3389/fcell.2024.1478283. eCollection 2024.

Abstract

Radial glia (RG) are the main progenitor cell type in the developing cortex. These cells are highly polarized, with a long basal process spanning the entire thickness of the cortex and acting as a support for neuronal migration. The RG cell terminates by an endfoot that contacts the pial (basal) surface. A shorter apical process also terminates with an endfoot that faces the ventricle, with a primary cilium protruding in the cerebrospinal fluid. These cell domains have particular subcellular compositions that are critical for the correct functioning of RG. When altered, this can affect proper development of the cortex, ultimately leading to cortical malformations, associated with different pathological outcomes. In this review, we focus on the current knowledge concerning the cell biology of these bipolar stem cells and discuss the role of their polarity in health and disease.

Keywords: cortical development; cortical malformations; local translation; neuronal migration; organelles; proliferation.

Publication types

  • Review

Grants and funding

The author(s) declare that financial support was received for the research, authorship, and/or publication of this article. Our lab was supported by the French ANR (ANR-22-CE16-0025-01, Ribocortex) and the Fondation pour la recherche medicale (FRM, Equipe FRM 2020 awarded to FF EQU202003010323). Our lab and permanent salaries were supported by Inserm, and the Centre national de la recherche scientifique (CNRS, FF). VV was supported by Sorbonne University. KC was supported by a Bourse Valérie Chamaillard awarded by the Fondation de France after ranking by the French Foundation for Research on Epilepsy, also by an E-Rare-3 project, the ERA-Net for Research on Rare Diseases (ERARE18-049, to FF), and the ANR Ribocortex project.