Sialylated glycoproteins suppress immune cell killing by binding to Siglec-7 and Siglec-9 in prostate cancer

J Clin Invest. 2024 Oct 22:e180282. doi: 10.1172/JCI180282. Online ahead of print.

Abstract

Prostate cancer is the second leading cause of male cancer death in the U.S. Current immune checkpoint inhibitor-based immunotherapies have improved survival for many malignancies; however, they have failed to prolong survival for prostate cancer. Siglecs (sialic acid-binding immunoglobulin-like lectins) are expressed on immune cells and regulate immune responses and function. Siglec-7 and Siglec-9 contribute to immune evasion by interacting with their ligands. However, the role of Siglec-7/9 receptors and their ligands in prostate cancer remains poorly understood. Here, we find that Siglec-7 and Siglec-9 are associated with poor prognosis in prostate cancer patients, and are highly expressed in myeloid cells, including macrophages, in prostate tumor tissues. Siglecs-7 and -9 ligands were expressed in prostate cancer cells and human prostate tumor tissues. Blocking the interactions between Siglec-7/9 and sialic acids inhibited prostate cancer xenograft growth and increased immune cell infiltration in humanized mice in vivo. Using a CRISPRi screen and mass spectrometry, we identified CD59 as a candidate Siglec-9 ligand in prostate cancer. The identification of Siglecs-7 and -9 as potential therapeutic targets, including CD59/Siglec-9 axis, opens up opportunities for immune-based interventions in prostate cancer.

Keywords: Cancer immunotherapy; Immunotherapy; Oncology; Prostate cancer.