We present a novel miniaturized, gear-shaped, fuel-free actuator capable of autonomously propelling itself in an aquatic environment to absorb heavy metals, such as copper ions. While hydrogel-based absorbents are promising solutions for cationic pollutant remediation, their stationary nature limits their effectiveness in areas where contaminants are unevenly distributed. To address this, we developed a bio-inspired soft actuator that mimics natural propulsion mechanisms. The Marangoni effect, driven by its inherent chemical properties, demonstrated a self-propelled motion without requiring external fuel. The proof-of-concept actuator generated a plane motion lasting up to 2 h and swept over an area approximately 400 times bigger than its size. By harnessing the chemical and optical properties of the hydrogel, we efficiently removed and quantitatively analyzed copper ions through a colorimetric method. This innovative integration of self-propelled movement and efficient copper ion absorption underscores its potential for advancing miniaturized devices in environmental remediation, paving the way for more active and efficient pollutant removal systems in challenging aquatic environments.
Keywords: Marangoni effect; fuel-free actuator; heavy metal ions; self-propelled; water pollution.