Perturbation-specific transcriptional mapping for unbiased target elucidation of antibiotics

Proc Natl Acad Sci U S A. 2024 Nov 5;121(45):e2409747121. doi: 10.1073/pnas.2409747121. Epub 2024 Oct 28.

Abstract

The rising prevalence of antibiotic resistance threatens human health. While more sophisticated strategies for antibiotic discovery are being developed, target elucidation of new chemical entities remains challenging. In the postgenomic era, expression profiling can play an important role in mechanism-of-action (MOA) prediction by reporting on the cellular response to perturbation. However, the broad application of transcriptomics has yet to fulfill its promise of transforming target elucidation due to challenges in identifying the most relevant, direct responses to target inhibition. We developed an unbiased strategy for MOA prediction, called perturbation-specific transcriptional mapping (PerSpecTM), in which large-throughput expression profiling of wild-type or hypomorphic mutants, depleted for essential targets, enables a computational strategy to address this challenge. We applied PerSpecTM to perform reference-based MOA prediction based on the principle that similar perturbations, whether chemical or genetic, will elicit similar transcriptional responses. Using this approach, we elucidated the MOAs of three molecules with activity against Pseudomonas aeruginosa by comparing their expression profiles to those of a reference set of antimicrobial compounds with known MOAs. We also show that transcriptional responses to small-molecule inhibition resemble those resulting from genetic depletion of essential targets by clustered regularly interspaced short palindromic repeats interference (CRISPRi) by PerSpecTM, demonstrating proof of concept that correlations between expression profiles of small-molecule and genetic perturbations can facilitate MOA prediction when no chemical entities exist to serve as a reference. Empowered by PerSpecTM, this work lays the foundation for an unbiased, readily scalable, systematic reference-based strategy for MOA elucidation that could transform antibiotic discovery efforts.

Keywords: RNAseq; antibiotics; gene expression; mechanism-of-action; transcriptomics.

MeSH terms

  • Anti-Bacterial Agents* / pharmacology
  • Drug Discovery / methods
  • Gene Expression Profiling / methods
  • Gene Expression Regulation, Bacterial / drug effects
  • Humans
  • Microbial Sensitivity Tests
  • Pseudomonas aeruginosa* / drug effects
  • Pseudomonas aeruginosa* / genetics
  • Transcription, Genetic / drug effects
  • Transcriptome

Substances

  • Anti-Bacterial Agents