β2-integrins control HIF1α activation in human neutrophils

Front Immunol. 2024 Oct 14:15:1406967. doi: 10.3389/fimmu.2024.1406967. eCollection 2024.

Abstract

During inflammation, human neutrophils engage β2-integrins to migrate from the blood circulation to inflammatory sites with high cytokine but low oxygen concentrations. We tested the hypothesis that the inhibition of prolyl hydroxylase domain-containing enzymes (PHDs), cytokines, and β2-integrins cooperates in HIF pathway activation in neutrophils. Using either the PHD inhibitor roxadustat (ROX) (pseudohypoxia) or normobaric hypoxia to stabilize HIF, we observed HIF1α protein accumulation in adherent neutrophils. Several inflammatory mediators did not induce HIF1α protein but provided additive or even synergistic signals (e.g., GM-CSF) under pseudohypoxic and hypoxic conditions. Importantly, and in contrast to adherent neutrophils, HIF1α protein expression was not detected in strictly suspended neutrophils despite PHD enzyme inhibition and the presence of inflammatory mediators. Blocking β2-integrins in adherent and activating β2-integrins in suspension neutrophils established the indispensability of β2-integrins for increasing HIF1α protein. Using GM-CSF as an example, increased HIF1α mRNA transcription via JAK2-STAT3 was necessary but not sufficient for HIF1α protein upregulation. Importantly, we found that β2-integrins led to HIF1α mRNA translation through the phosphorylation of the essential translation initiation factors eIF4E and 4EBP1. Finally, pseudohypoxic and hypoxic conditions inducing HIF1α consistently delayed apoptosis in adherent neutrophils on fibronectin under low serum concentrations. Pharmacological HIF1α inhibition reversed delayed apoptosis, supporting the importance of this pathway for neutrophil survival under conditions mimicking extravascular sites. We describe a novel β2-integrin-controlled mechanism of HIF1α stabilization in human neutrophils. Conceivably, this mechanism restricts HIF1α activation in response to hypoxia and pharmacological PHD enzyme inhibitors to neutrophils migrating toward inflammatory sites.

Keywords: adhesion; hypoxia; hypoxia-inducible factors; inflammation; integrins; monocytes; myeloid cells; neutrophils.

MeSH terms

  • CD18 Antigens* / metabolism
  • Glycine / analogs & derivatives
  • Granulocyte-Macrophage Colony-Stimulating Factor / metabolism
  • Humans
  • Hypoxia-Inducible Factor 1, alpha Subunit* / metabolism
  • Isoquinolines
  • Janus Kinase 2 / metabolism
  • Neutrophils* / immunology
  • Neutrophils* / metabolism
  • STAT3 Transcription Factor / metabolism
  • Signal Transduction / drug effects

Substances

  • Hypoxia-Inducible Factor 1, alpha Subunit
  • HIF1A protein, human
  • CD18 Antigens
  • Granulocyte-Macrophage Colony-Stimulating Factor
  • roxadustat
  • STAT3 Transcription Factor
  • Janus Kinase 2
  • STAT3 protein, human
  • Glycine
  • Isoquinolines

Grants and funding

The author(s) declare financial support was received for the research, authorship, and/or publication of this article. This work was supported by grants KE 576/10-1 from the Deutsche Forschungsgemeinschaft to RK, grant SCHR 771/8-1 and SCHR 771/10-1 from the Deutsche Forschungsgemeinschaft to AS, grant 394046635 – SFB 1365 from the Deutsche Forschungsgemeinschaft to RK, AS, and K-UE and ECRC grants to AS and RK.