Insights of energy potential in thermophilic sugarcane vinasse and molasses treatment: does two-stage codigestion enhance operational performance?

Biodegradation. 2024 Oct 29;36(1):3. doi: 10.1007/s10532-024-10097-y.

Abstract

The study evaluated the performance of thermophilic co-digestion in both single-stage methanogenic reactors (TMR) and two-stage systems, consisting of a thermophilic acidogenic reactor and a thermophilic sequential methanogenic reactor (TSMR). A 1:1 mixture of sugarcane vinasse and molasses was codigested in anaerobic fluidized bed reactors, with varying organic matter concentrations based on chemical oxygen demand (COD) ranging from 5 to 22.5 g COD L-1. Both systems achieved high organic matter removal efficiency (51 to 86.5%) and similar methane (CH4) yields (> 148 mL CH4 g-1CODremoved). However, at the highest substrate concentration (22.5 g COD L-1), the TSMR outperformed the TMR in terms of energy generation potential (205.6 kJ d-1 vs. 125 kJ d-1). Phase separation in the two-stage system increased bioenergy generation by up to 43.5% at lower substrate concentrations (7.5 g COD L-1), with hydrogen (H2) generation playing a critical role in this enhancement. Additionally, the two-stage system produced value-added products, including ethanol (2.3 g L-1), volatile organic acids (3.2 g lactate L-1), and H2 (0.6-2.7 L H2 L-1 d-1). Microbial analysis revealed that Thermoanaerobacterium, Caldanaerobius, and Clostridium were dominant at 5 g COD L-1, while Lactobacillus prevailed at concentrations of ≥ 15 g COD L-1. The primary methane producers in the single-stage system were Methanosarcina, Methanoculleus, and Methanobacterium, whereas Methanothermobacter, Bathyarchaeia, and Methanosarcina dominated in the two-stage system.

Keywords: Metabolic prediction; Recovery energy; Single-stage; Two-stage system; Wastewater reuse.

MeSH terms

  • Anaerobiosis
  • Biofuels
  • Biological Oxygen Demand Analysis
  • Bioreactors* / microbiology
  • Methane* / metabolism
  • Molasses*
  • Saccharum* / chemistry

Substances

  • Methane
  • Biofuels