The anaphylatoxins C3a and C5a are products of the complement cascade that play important and interrelated roles in health and disease. Both are potential targets for anti-inflammatory active immunotherapies in which a patient's own immune system is stimulated to produce therapeutic immune responses against problematic self-molecules. However, the complex and time-dependent interrelations between the two molecules make dual targeting challenging. To investigate a dual-target active immunotherapy against C3a and C5a and to systematically study the effect of varied degrees of responses against both targets, the study employed self-assembled peptide immunogens capable of displaying a broad range of epitope compositions and Design-of-Experiments (DoE) approaches. Peptide nanofibers contained B-cell epitopes of C3a and C5a in defined quantities, and intranasal immunization raised systemic and mucosal immunity against each target. In a lipopolysaccharide-induced model of sepsis, increasing anti-C5a responses are protective, whereas increasing anti-C3a responses are detrimental, and survival rates are negatively correlated with anti-C3a/anti-C5a IgG titer ratio. This work highlights the interplay between the two molecules by making use of a modular, defined, and easily adjusted biomaterial-based active immunotherapy platform.
Keywords: immune engineering; immunoengineering; immunotherapy; self‐assembly; supramolecular.
© 2024 Wiley‐VCH GmbH.